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Abstract

We discuss a branch of Ramsey theory concerning vertex Folkman
numbers and how computer algorithms have been used to compute
a new Folkman number. We write G → (a1, . . . , ak)v if for every
vertex k-coloring of an undirected simple graph G, a monochromatic
Kai

is forced in color i ∈ {1, . . . , k}. The vertex Folkman number
is defined as Fv(a1, . . . , ak; p) = min{|V (G)| : G → (a1, . . . , ak)v ∧
Kp 6⊆ G}. Folkman showed in 1970 that this number exists for p >

max{a1, . . . , ak}. Let m = 1+
Pk

i=1
(ai−1) and a = max{a1, . . . , ak},

then Fv(a1, . . . , ak; p) = m for p > m, and Fv(a1, . . . , ak; p) = a + m

for p = m. For p < m the situation is more difficult and much less is
known. We show here that, for a case of p = m−1, Fv(2, 2, 3; 4) = 14.

1 Introduction

Let G be a simple, undirected graph with vertex set V (G) and edge set
E(G). The chromatic number of G will be denoted by χ(G), and the
independence number of G by α(G). We write G → (a1, . . . , ak)v if for
every vertex k-coloring of G, a monochromatic Kai

is forced in some color
i ∈ {1, . . . , k}. Let

Hv(a1, . . . , ak; p) = {G : G→ (a1, . . . , ak)v ∧Kp 6⊆ G} .

The graphs in the set H = Hv(a1, . . . , ak; p) are called Folkman graphs.
Folkman [2] (see also [6]) showed thatH is non-empty for p > max{a1, . . . , ak}.
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Hv(a1, . . . , ak; p; n) will denote the set of Folkman graphs with n vertices.
Folkman graphs are maximal when the addition of any other edge will cre-
ate the forbidden Kp. We define the vertex Folkman numbers by

Fv(a1, . . . , ak; p) = min{|V (G)| : G ∈ Hv(a1, . . . , ak; p)} .

The Ramsey number R(r, l) is the smallest number n such that all edge
2-colorings of Kn contain either a monochromatic Kr in the first color or
a monochromatic Kl in the second color [3]. A graph G is a (k, l)-Ramsey
graph if G has no Kr and α(G) < l. The set R(r, l; n) is the set of all
(k, l)-Ramsey graphs on n vertices.

Let m = 1+
∑k

i=1
(ai−1), then it is easy to see that Fv(a1, . . . , ak; p) = m

for p > m by the pigeon-hole principle.  Luczak et al. [7] showed that
Fv(a1, . . . , ak; p) = ak + m for p = m. For p < m much less is known. Only
one nontrivial value is known for p = m−2: Fv(2, 2, 2, 2; 3) = 22 computed
by Jensen and Royle [4] in 1995. Most research has focused on the case
p = m− 1. For a summary of results see [6].

In 2000, Nenov [12] showed that 10 ≤ Fv(2, 2, 3; 4) ≤ 14; he proved
the upper bound using the 14-node graph Γ3, depicted in Figure 1. No
graph with fewer than 14 vertices is known to exist in Hv(2, 2, 3; 4). It
is shown here that there are no such graphs and thus, Fv(2, 2, 3; 4) = 14.
Nenov and Nedialkov also studied several other parameter situations in
[10, 11, 13, 14, 15, 16]. For the purposes of this paper, references to Folkman
graphs will mean graphs in Hv(2, 2, 3; 4) unless otherwise stated.

Proving exact values of Folkman numbers by hand is often very difficult
since deriving the lower bound requires a non-existence proof. Computers
can be of great help, but because showing non-existence often entails large
searches, the algorithms must be carefully designed to work as efficiently
as possible.

To find the exact value of Fv(2, 2, 3; 4) with the aid of computers, there
are two main approaches. One approach is to check all graphs of order < 14
for inclusion in Hv(2, 2, 3; 4), starting with graphs of order 10. If a graph
is found to be Folkman, then the current order is the Folkman number. If
not, the next higher order must be checked. A second approach is to find
all Folkman graphs on 14 vertices and drop a vertex from each one in all
possible ways. If one of the resulting graphs is Folkman, then 13 is the new
upper bound and the process can be repeated on the Folkman graphs with
13 vertices. Once no smaller Folkman graphs are obtained, the Folkman
number has been found.
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Figure 1: The Nenov graph Γ3 taken from [12].

2 Testing for the Folkman Property

Regardless of the approach, we must have an algorithm for testing whether
or not a graph is in Hv(2, 2, 3; 4). From the set parameters, any graph that
contains K4 can be discarded. For the remaining graphs, any colorings of
a graph that don’t have a K2 in the first or second colors must force a
K3 in the third, otherwise the graph is not Folkman. Such colorings occur
when two independent sets are colored with the first and second colors,
forcing any remaining vertices not in the union of the two independent sets
to contain a K3 in the third color.

The algorithm for determining if G ∈ Hv(2, 2, 3; 4) is fairly straightfor-
ward: Discard G if it contains a K4. Otherwise, check that for each pair
of independent sets A,B ∈ G, the induced subgraph on V (G) \ (A ∪ B)
contains a K3. A pseudo-code outline of the algorithm is presented as
Algorithm 2.1, InH2234. For this to be efficient, we need Lemma 2.1.
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Algorithm 2.1: InH2234(G)

if K4 ⊆ G

then return ( false )
M = AllMaxCliques(G)
T = {{a, b, c} : a, b, c ∈ V (G) and abc is a triangle in G}
for each A,B ∈M

do







C ← V (G) \ (A ∪B)
if C doesn’t contain a triangle in T

then return ( false )
return ( true )

Lemma 2.1 It is sufficient to consider only maximal independent sets

when determining whether G ∈ Hv(2, 2, 3; 4).

Proof. Let A,B be maximal independent sets in G and let V (G) \ (A∪B)
induce a subgraph S in G. In order for G ∈ Hv(2, 2, 3; 4), S must contain
a K3. Now let A′ ⊂ A and B′ ⊂ B. Since K3 is a subgraph of S, it follows
that the induced subgraph on V (G) \ (A′ ∪ B′) also contains a K3. Thus,
in Algorithm 2.1 it is sufficient to consider only the maximal independent
sets A and B. �

For graphs of order 14, the number of maximal independent sets is
usually very small (around 40), so the complexity of the algorithm is not
a great obstacle. The algorithm AllMaxCliques [5] is used to find these
sets. Although AllMaxCliques returns maximal cliques, if the input is
G, the result will be maximal independent sets in G.

For efficiency, it is also necessary to have a precomputed table of tri-
angles in G. This table is used to check if an induced subgraph contains
a triangle. The table is not very large, with an upper bound of 364 ele-
ments for K14. The algorithm to build the table is a simple triple-nested
brute force search over all vertices. With at most 14 vertices, the O(n3)
complexity is insignificant.

3 Computing the Solution

To examine a single graph, running InH2234 is virtually instantaneous,
but the number of graphs that need to be examined explodes as the order
increases. For example, there are 12,346 graphs on 8 vertices, which takes
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about 0.97 seconds to analyze. However, to analyze all 165,091,172,592 on
12 vertices would take about 96 days on a 1 GHz Pentium III CPU.

Because of the time requirements it is impractical to check all the graphs
on 12 or more vertices. Although parallelizing the search using many com-
puters is possible, it would not be a practical solution for graphs on even
13 vertices.

There is an alternative, however, that avoids searching all graphs on less
than 14 vertices. If it were possible to generate all the Folkman graphs on
14 vertices, the existence of Folkman graphs on 13 vertices could be decided
by dropping a vertex in all possible ways from each graph and testing for
the Folkman property.

We write G − v to denote a graph with deleted vertex v and edges
incident to v. Let S = Hv(2, 2, 3; 4; 14) and D = {G−v : G ∈ S}, then there
is a Folkman graph on 13 vertices if and only if D ∩Hv(2, 2, 3; 4; 13) 6= ∅.
The difficulty lies in generating S. It is easy to test if a graph is in S, but
finding all of them could require testing all graphs on 14 vertices, which
has already been shown to be impractical.

The Ramsey number R(3, 4) = R(4, 3) = 9 guarantees that all graphs of
order ≥ 9 have either a K4 or a K3. The Folkman graphs in Hv(2, 2, 3; 4; 14)
clearly do not have a K4, so they must have a K3. Using this observation, all
graphs without K4 on 11 vertices can be extended to graphs on 14 vertices
by connecting three independent vertices to the triangle-free subsets of each
graph in all possible ways. It is necessary to avoid subsets with triangles
so that a K4 is not formed. Figure 2 gives an illustration. The algorithm
is called Extend:

1. For each K4-free graph on 11 vertices, do steps 2, 3, 4 below. The
graphs are generated using geng from the nauty software package [8]
and then filtered for those without K4. [easy]

2. Extend graph to 14 vertices by efficiently adding K3 with incident
edges. Each new vertex is incident with a maximal triangle-free subset
to avoid creating a K4. This is done in all possible ways with obvious
isomorphs skipped. The output will contain all maximal Folkman
graphs in addition to other Folkman and non-Folkman graphs. [hard]

3. Eliminate isomorphs using nauty software tools. [easy]

4. Filter for Folkman property using InH2234. [easy]

In addition to the custom built algorithms InH2234 and Extend, the
software packages nauty [8] and Condor [1] were crucial. nauty includes
highly optimized and efficient tools for handling graphs. Developed by
Brendan McKay from the Australian National University, nauty contains
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Figure 2: Illustration of the extension process.

programs to quickly generate all non-isomorphic graphs of a given order
as well as identify and eliminate isomorphic graphs. nauty has been used
in numerous research projects for many years. Condor is a distributed
processing package created at the Computer Science Department at the
University of Wisconsin.

The advantage of the procedure Extend is that finding all graphs on
11 vertices without K4 is feasible: There are 138,892,304 such graphs. The
extension process is computationally challenging, yet easily parallelizable;
the work was divided over 153 machines in the RIT Computer Science De-
partment labs using Condor. Various types of machines were used: Sun
Blade 150, Sun Blade 1500, and Sun Fire 880. There were 917 different
processes running for a combined processing time of 85 days, 4 hours, and
43 minutes. Since these processes were running in parallel, the complete ex-
tension process was completed in just under 3 days. The extension process
generated, in particular, all maximal Folkman graphs.

To find all Folkman graphs on 14 vertices, the maximal graphs were
reduced using the algorithm ReduceSize. This algorithm inputs a graph
and removes edges in all possible ways, outputting only those that are
Folkman. ReduceSize was applied to all of the maximal Folkman graphs.
The resulting set of non-isomorphic graphs combined with the maximal
graphs was the complete set of Folkman graphs on 14 vertices. Isomorphs
were eliminated using nauty. The set included the Nenov graph Γ3. The
processing time for this stage was small.

To verify the correctness of the results, the approach just described was
slightly modified: All the Folkman graphs on 14 vertices were generated by
extending graphs on 10 vertices instead of 11. The process is as follows:
Extend graphs on 10 vertices by adding an independent set of 4 vertices and
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connecting them to maximal triangle-free subsets of the graph in all possible
ways. However, by using an independent set of order 4, the extensions avoid
graphs which have no independent set of order 4. This is not a problem,
as the missing graphs are those Folkman graphs which are in the Ramsey
graph set R(4, 4; 14), computed in [9].

Since the extension from 10 to 14 vertices is guaranteed to generate
all maximal Folkman graphs with α(G) ≥ 4, the other maximal Folkman
graphs were extracted from R(4, 4; 14). This set was then reduced, using
ReduceSize as before. The final set of non-isomorphic graphs was exactly
the same as previously found after extending from 11 vertices and reducing.

To ensure that no graph on 13 vertices is in Hv(2, 2, 3; 4), the last algo-
rithm ReduceOrder drops a vertex in all possible ways from each of the
Folkman graphs on 14 vertices and the algorithm InH2234 then checks for
the Folkman property. No Folkman graphs were found on 13 vertices, thus
proving that Fv(2, 2, 3; 4) = 14.

4 Results

Table 1 illustrates various properties of all Folkman graphs in Hv(2, 2, 3; 4; 14).
There are 12,227 such graphs in total; interestingly, all of them have chro-
matic number equal to 5.

|E(G)| maxdeg(G) mindeg(G) α(G) |Aut(G)|
# # # # #

42 1 7 527 4 451 3 1507 1 11367
43 6 8 11080 5 5759 4 10557 2 802
44 51 9 393 6 5996 5 160 4 44
45 453 10 227 7 21 6 2 7 1
46 2279 7 1 8 10
47 4555 14 2
48 3628 16 1
49 1138
50 114
51 2

Table 1: Properties of graphs in Hv(2, 2, 3; 4; 14).

The order of the automorphism group of the Nenov graph Γ3, pictured
in Figure 1, is equal to 14. The graph F16, presented in Figure 3, has the
largest automorphism group among all 12,227 graphs in Hv(2, 2, 3; 4), with
|Aut(F16)| = 16. Table 2 lists the specific properties of these two graphs in
relation to the properties shown in Table 1.
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G χ(G) |E(G)| maxdeg(G) mindeg(G) α(G) |Aut(G)|
Γ3 5 42 8 4 7 14
F16 5 45 7 5 4 16

Table 2: Properties of Γ3 and F16.

Figure 3: The Folkman graph F16 with |Aut(G)| = 16.
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